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THE DYNAMICS OF AN ISOLATED PLASMA FILAMENT  

AT THE EDGE OF A TOROIDAL DEVICE, REV. 1 

D.D. Ryutov 

Lawrence Livermore National Laboratory, Livermore, CA 94551 

Abstract 

The dynamics of an isolated plasma filament (an isolated blob) in the far scrape-

off layer (SOL) of a toroidal device is described, with a proper averaging of the 

geometrical parameters as well as plasma parameters along the filament. The analysis is 

limited to the magnetohydrodynamic description. The effects of the anchored ends and 

finite plasma resistivity are also discussed.  

I INTRODUCTION 

A number of experiments have shown that, at the periphery of a toroidal plasma, 

often beyond the main scrape-off layer (SOL), there may exist filamentary plasma 

structures which are strongly elongated along field lines and have small transverse cross-

sections (e.g., [1-3], and references therein). Their significance is related to the fact that, 

propagating into the far SOL, they may hit the tokamak wall in the area that might not be 

designed for accommodating high heat loads. Their dynamics is interesting also from the 

basic plasma physics standpoint. In this note we consider some aspects of this latter, basic 

side of the problem. The structures that we consider are often called “blobs” (after the 

important paper [4]), this term reflecting their shape in the poloidal cross-section. We 

will use this term interchangeably with “filaments.”  

In this note we consider mostly an “isolated filament,” by which we mean that the 

plasma density outside the filament is negligibly small and does not affect the filament’s 
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dynamics. We do not discuss the formation of isolated blobs, assuming that they have 

somehow emerged from the main SOL plasma. One of the plausible mechanisms of 

formation of isolated blobs may be an explosive instability considered in Ref. [5].  

With regard to the ends of an isolated filament, we consider two possibilities: 

first, in Sec. IV, we analyse the situation where neither of the ends of the filament is in 

contact with a material surface. After that, in Sec. VI, we consider a filament whose end 

is in contact with a conducting limiter. In the last sections of this paper we include effects 

of finite plasma resistivity and resistive ballooning.  

In the past, numerous aspects of the blob physics have been looked at. In Ref. [6], 

the dynamics of an isolated blob that is in contact with the divertor plate has been 

qualitatively analyzed; the role of the X-point was taken into account in the form of a 

“heuristic” boundary condition [7]. In Ref. [8], also on the qualitative level, the evolution 

of isolated blobs in the divertor region was considered, with both the sheath boundary 

condition at the divertor plate and the “heuristic” boundary condition near the X-point 

imposed. In Ref. [9], the blobs were analyzed on the basis of the MHD vorticity equation.  

An extensive study of the blob dynamics based on the vorticity equation was offered in 

Ref. [10].  Viscous effects and the parallel dynamics and heat conduction were taken into 

account. Other aspects of the blob theory have been discussed in Refs. [11-14], see also a 

brief review [15].  

 In the present paper, based entirely on the MHD equations, we concentrate on the 

geometrical features of isolated filaments associated with the facts that the field line 

curvature and other parameters of the magnetic field may vary substantially along the 

long filament.  
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To set the stage to this study, we repeat a simple derivation presented in Ref. [6] 

to illustrate the blob dynamics.  As was shown in Refs. [4, 6] the cross-field motion of the 

blob is determined from the condition that the cross-field current generated by the 

curvature drift be compensated by the polarization current driven by the plasma inertia. 

To evaluate an acceleration of an insulated filament, one can note (e.g., [5]), that the 

curvature-driven current density can be estimated as 

! 

cp /RB , and the polarization current 

density as 

! 

c" ˙ ̇ # $ /B  (in these estimates, p and ρ are the plasma pressure and density, 

respectively, B is the magnetic field, R is the major radius, c is the velocity of light, and 

! 

˙ ̇ " #  is the radial acceleration of the filament; we use CGS Gaussian system of units).  By 

equating the two current densities, one obtains the following rough estimate: 

! 

˙ ̇ " # ~
p

R$
              (1) 

The sign of this acceleration is such that the filament moves away from the plasma on the 

low-field side and towards the plasma on the high-field side of a torus.  If the filament is 

in contact with a conducting surface, then a partial short-circuiting of the polarization 

field occurs, and the motion of the filament slows down (e.g., [6, 10]). 

 When evaluating the acceleration in Eq. (1), we tacitly assumed that the filament 

is short-enough, so that the curvature radius is a well-defined quantity. However, if the 

filament is long, so that the curvature substantially varies along its length, the question 

arises as to how one should average the curvature, as well as the pressure and the density. 

The present note provides an answer to this question within the MHD approximation.  

 We consider the blob as a well-defined object, clearly separated from its 

environment. Such blobs have been observed experimentally (see the images in Refs. [1]-

[3]) and often demonstrate a remarkable cohesion in the course of their propagation 
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towards the walls. To address this feature, we assume that the deformation of the cross-

section of the filament is suppressed by some un-specified viscous forces and evaluate 

the viscosity which would be sufficient to provide cohesion. The analysis of the viscous 

force in Ref. [10] indeed shows that its presence suppresses the internal dynamics inside 

the filament. On the other hand, if the viscosity is small, and the filament changes its 

cross-field shape in the course of the radial motion, our results could still be used at a 

qualitative level, to describe the motion of some “median” line of the filament.  

II BASIC EQUATIONS AND GEOMETRICAL FRAMEWORK 

We use the following set of equations: 

      

! 

"
dv

dt
= #$p +

j % B

c
+ fvisc                (2) 

      

! 

"B

"t
=# $ v $ B                 (3) 

! 

" # B =
4$

c
j                  (4) 

where j is the current density and fvisc is a viscous force.  

The plasma at the edge of fusion devices, especially in the far SOL, has a low 

pressure. This allows one to neglect the magnetic field perturbations in the course of the 

displacement of the flux tube and set     

! 

"B/"t = 0. Then Eq. (3) yields in a standard way: 

        

! 

v " B = #(1/ c)$%                 (5) 

We have written the right-hand side (rhs) in a way that allows one to associate the 

function ϕ with the electrostatic potential. Eq. (5) shows that ϕ is constant along the field 

lines, i.e., the potential is a function of the field line. So, the cross-field displacement of a 

certain element of a field line determines the displacement over its whole length. As is 
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well known (e.g., [16]), this means that the allowed displacements bring one field line 

(together with particles populating it) to another field line.  

It is convenient to present a displacement of a certain field line as a superposition 

of displacement ξn normal to the poloidal flux surface (Fig. 1), and displacement ξg lying 

within the flux surface but perpendicular to the field line (the subscript “g” stands for 

“geodesic”). These two displacements are perpendicular to each other and to the field 

line. We will use the following local triplet of the unit vectors: the first is a unit vector 

along the external normal to the flux surface, the third is the unit vector in the direction of 

the magnetic field, and the second (geodesic) is a vector product of the third and the first. 

If one introduces displacement 

! 

"#0 = ("n0,"g0)  at a certain reference point on the 

field line, then displacement at any other point can be found from purely geometric 

considerations. For the normal displacement  (Fig. 1) the result is:  

! 

"n = "n0
Bp0R0

BpR
                                  (6) 

This equation follows from the condition that the poloidal flux between the two 

neighboring flux surfaces is constant. The subscript “0” here designates the quantities at 

the reference point, Bp is the poloidal component of the magnetic field, and R is the major 

radius, Fig. 1. 

 It should be emphasized that in our analysis it is assumed that both normal and 

geodesic displacements are small compared to the minor radius of the torus. This 

condition is quite natural for the normal displacements limited to a narrow zone between 

the outer SOL and the wall. This condition can be more restrictive for the geodesic 

displacement, which can greatly exceed the normal displacement in the case of a strong 

shear and a long filament (see below).  
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For the geodesic displacement the result is somewhat more complex. The 

derivation is presented in Appendix 1, where it is shown that 

! 

"g = "g0 #"n0Q[ ]
BPR

B

$ 

% 
& 

' 

( 
) 

B
0

Bp0R0

$ 

% 
& & 

' 

( 
) ) 

$ 

% 
& & 

' 

( 
) )               (7) 

where the quantity Q is introduced in the Appendix I (Eq. (A.4)) and can be called an 

“integrated shear.” In particular, it determines the ellipticity E of the flux tube that has a 

circular cross-section in the reference point (Cf. [17], [18]). By E  we mean the ratio of 

the major semi-axis to the minor semi-axis. In the case of a strong integrated shear, the 

ellipticity can be presented as  

! 

E =Q
2                  (8) 

The shear term in Eq. (7) scales as a length s of the field line and can be neglected 

for short-enough filaments, such that the poloidal angle subtended by them doe not 

exceed roughly π/2, and they do not come close to the X-point.  

III. GLOBAL MOTION OF THE FLUX TUBE 

For a large-enough viscous force, any cross-section of the flux-tube will move as 

a whole, without a mutual slippage of the liquid elements occupying this cross-section. 

So, for a large-enough viscous force, displacement of the filament can be characterized 

by a single vector ξ⊥, the same for all the pieces of a given cross-section. In other words, 

the shape of the displaced flux-tube can be characterized by a displacement vector     

ξ⊥(s, t), which is a function of a single spatial coordinate s – the distance along the field 

line – and the time t.    
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 On the other hand, as the viscous force is a force of mutual friction of various 

elements inside the plasma, the net viscous force acting in a certain cross-section of the 

flux tube is zero: 

! 

f
visc
dS = 0"                  (9) 

Our further plan consists in using Eq. (2) to find the cross-field current, imposing 

a constraint (9) and, from the current-continuity equation integrated over the length of the 

flux-tube, finding the acceleration in the reference point (and, by virtue of Eqs. (6) and 

(7), in any point of the flux tube). From Eq. (2) we obtain:  

! 

j" = #
c$ ˙ ̇ % & B

B
2

# c' &
pB

B
2

( 

) 
* 

+ 

, 
- + 2cp

B &'B

B
2

( 

) 
* 

+ 

, 
- + c

fvisc & B

B
2

                   (10) 

We have used an identity (valid for the vacuum magnetic field): 

! 

"p# B /B
2 =" # pB /B

2( ) $ 2p(B #"B) /B3 .   

Now we want to use Eq. (9) and need to integrate Eq. (10) over a cross-section of 

the filament. In every cross-section, one can introduce a coordinate frame with the axes 

oriented along the two mutually orthogonal directions “n” and “g” (see discussion before 

Eq. (6)). The corresponding coordinates in every cross-section are xn and xg, respectively, 

measured from some median field line in the flux tube (as we shall see, its choice does 

not matter). When performing the integration, we notice that the second term in the rhs of 

Eq. (10) is a sum of the derivatives 

! 

" /"xn," /"xg  and yields zero when integrated over the 

cross-section (over dS=dxndxg). We further note that the displacement is uniform over the 

cross-section and the parameters of the magnetic field vary very little over the cross-

section of  a thin tube, so the integration in the first and the third terms in (10) will be 

reduced to the integrals 

! 

"dS#  and 

! 

pdS" . With these notions made, one finds:  
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! 

j"dS# = $
c ˙ ̇ % & B

B
2

'# dS + 2c
B &(B

B
3

) 

* 
+ 

, 

- 
. p# dS           (11) 

In all these calculations we retained only the leading-order terms in the small parameter 

a/R, where a is the filament radius. 

 Now we use the current continuity equation which can be written as 

      

! 

" # j$ = %B
&

&s

j||

B
,              (12) 

where we have j||=j||(s, xn, xb). By multiplying the l.h.s. of Eq. (12) consecutively by xn 

and xg, and performing integration over the cross-section (i.e., over dS=dxndxg), one 

finds:  

! 

1

B
jn,g" dS =

#

#s
(
1

B
xn,g j||dS" )             (13) 

Then, integrating this equation over ds and taking into account that j||  is zero at both ends 

of the isolated filament, we find 

! 

ds

B
" jn,g" dS = 0               (14) 

This result is indeed independent on the particular choice of the median field line.  

Using  Eqs. (11) and (14) we then obtain   

! 

ds
˙ ̇ " n,g

B
2# $dS# = %2 ds

&B( )
n,g

B
3# pdS#            (15) 

 Finally, substituting Eqs. (6) and (7) into Eq. (15), we find the following result for 

the acceleration of the reference point:  

! 

˙ ̇ " n0
= #

2

Bp0
R

0

ds
$B( )

n

B
3% pdS%

& 

' 
( 

) 

* 
+ 

ds

B
2
BpR

% ,dS%
& 

' 
( 

) 

* 
+ 

#1

          (16) 
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! 

˙ ̇ " g0
+ ˙ ̇ " n0

BP 0
R

0

QBpRds

B
3# $dS#( )

% 

& 
' 

( 

) 
* 

BpRds

B
3# $dS#

% 

& 
' 

( 

) 
* 

+1

= +
2Bp0

R
0

B
0

ds
,B( )

g

B
3# pdS#

% 

& 
' 
' 

( 

) 
* 
* 

BpRds

B
3# $dS#

% 

& 
' 

( 

) 
* 

+1
              (17)  

This result is quite general in that we have not made any assumptions regarding the 

spatial dependence of the pressure and density inside the flux tube. Note that the sign of 

! 

("B)
n
 can change along the filament. This happens, for example, when the filament 

encompasses both the low-field side and a high-field side of a tokamak with a single-null 

divertor. Then, the overall direction of normal acceleration (to the wall or away from the 

wall) is determined by the proper weighing of the plasma parameters over the flux tube, 

as described by Eq. (16).  

 In some cases, it is more convenient to switch in Eqs. (16), (17) to integration 

along the poloidal circumference, by using the identity ds=(B/Bp)dl. This yields: 

! 

˙ ̇ " n0
= #

2

Bp0
R

0

dl
$B( )

n

B
2
Bp

% pdS%
& 

' 
( 

) 

* 
+ 

dl

BBp

2
R

% ,dS%
& 

' 
( 

) 

* 
+ 

#1

       (16’) 

! 

˙ ̇ " g0
+ ˙ ̇ " n0

BP 0
R

0

QRdl

B
2# $dS#( )

% 

& ' 
( 

) * 
Rdl

B
2# $dS#

% 

& ' 
( 

) * 

+1

= +
2Bp0

R
0

B
0

dl
,B( )

g

BpB
2# pdS#

% 

& 
' 
' 

( 

) 
* 
* 

Rdl

BpB
2# $dS#

% 

& 
' 

( 

) 
* 

+1        (17’) 

IV. EXAMPLES 

 Consider first a situation where the shear effect is insignificant, and the second 

term in the lhs of Eq. (17) can be neglected. Then, the direction of the motion of the flux 

tube is determined by the properly weighted gradients of the magnetic field 

! 

("B)
n
and 

! 

("B)g . If the fluxtube is situated at the low-field side, as shown in Fig. 2, the normal 

gradient is directed away from the plasma, and the filament moves toward the wall. The 
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geodesic acceleration which, for BP<BT, is roughly equal to the poloidal acceleration) 

may change sign depending on whether the flux tube occupies predominantly the upper 

or the lower part of the cross-section. In the first case, the flux tube near the equatorial 

plane will move downward, whereas in the second case it will move upward (Fig. 2 a,b).  

If the pressure and density are both uniform from one end of the tube to another, 

the result can be presented as: 

! 

˙ ̇ " n0
= #

1

Bp0
R

0

ds
$B( )

n

B
3%

& 

' 
( 

) 

* 
+ 

ds

B
2
BpR

%
& 

' 
( 

) 

* 
+ 

#1

4W

3M
; 

! 

˙ ̇ " g0
= #

Bp0

B
0

ds
$B( )

g

B
3%

& 

' 
( 
( 

) 

* 
+ 
+ 

Bpds

B
3%

& 

' 
( 

) 

* 
+ 

#1

4W

3M
  (18) 

where W is the thermal energy of the plasma in the flux tube,  M is the mass of that 

plasma, and integrations are taken over the segment filled with the plasma. In this case 

the ratio of the normal and tangential forces is independent on the plasma parameters and 

is determined by purely geometric factors. The same is true if the filament is short, so that 

the parameters of the magnetic field do not vary substantially over the length of the 

plasma-filled segment. Then, one can take the magnetic field out of the integrals in Eqs. 

(18) to obtain: 

! 

˙ ̇ " 
n

= #
$B( )

n

B

4W

3M
;  

! 

˙ ̇ " g = #
$B( )

g

B

4W

3M
           (19) 

We have dropped the subscript “0” because all the points of a short segment can be 

characterized by the same acceleration. Note that we do not need here the assumption of 

the uniformity of the plasma parameters over the length. Eq. (19) is a quantitative 

generalization of the estimate (1). Note also that Eqs. (18) and (19) for ξn (not ξg!) do not 

depend on our assumption that the shear term in Eqq. (7) is insignificant. 

 In the case where shear is substantial, in particular, if one end of the flux tube 

comes close to the X-point (Fig. 2c), it is the shear term that determines the poloidal 
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displacement. In this case, one can neglect the r.h.s. in Eq. (17’). For the situation shown 

in Fig. 2c, the shear term is dominated by the contribution of the vicinity of the X-point 

and is positive. For a large average shear, the poloidal displacement in the observation 

point can be much larger than the normal displacement.  

 As has already been mentioned, for the large shear the shape of the cross-section 

of the flux-tube can experience substantial changes along the field line. In general, Eqs. 

(6) and (7) allow one to predict the shape of the flux tube cross-section based on the 

observations in a single toroidal location. 

V. APPLICABILITY LIMITS 

 If the flux tube starts with a zero velocity, then the ratio of the normal and 

geodesic accelerations is also the ratio of the corresponding velocities.  If the flux-tube 

has traveled radially a distance d, then the characteristic velocity determined from Eq. (1) 

[or (19)] is  

  

! 

v ~ v
Ti

d /R                (20) 

 Let us now estimate the magnitude of the viscosity required for suppressing a 

mutual slippage of the elements of the flux tube. To maintain the cohesion of the 

filament, the friction force must be greater than the driving force which is of order of p/R 

(per unit volume). The friction force is ρνδv/a2, where ν is the kinematic viscosity and δv 

is the velocity variation over the flux-tube cross-section. We want the velocity variation 

δv to be much less than the average velocity v (20) reached when the fluxtube got 

displaced by the distance of order of its radius a, d~a, and, at the same time, the friction 

force to be greater than the driving force, i.e., ρνδv/a2> p/R. This yields the following 

constraint on the flux-tube radius:   

! 

a < (" 2R/v
Ti

2
)
1/ 3. Assuming that ν is of order of the 
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Bohm kinematic viscosity, 
  

! 

" ~ r
Li

v
Ti

, one finds: 

! 

a /r
Li

< (R /r
Li
)
1/ 3
. Typically, this limits a 

to the scale of 10-30 ion gyroradii. 

 If viscosity is insufficient (as is the case for thick flux tubes), then various “sub-

filaments” constituting the initial filament, will accelerate at a different rate, and initially 

well defined flux-tube will get dispersed in the radial and toroidal directions (the size of 

its cross-section will become of order of the distance traveled). Numerical analysis of this 

regime in a simple geometry can be found in Ref. [10]. At low viscosity, our results could 

be used for evaluating a motion of some middle point in the evolving (and experiencing 

an averaged cross-field motion) blob.  

 Consider now our assumption of a low plasma beta. We have neglected the 

magnetic field perturbations by the plasma currents associated with the motion of the flux 

tube. Now we evaluate this perturbation. The main contribution to it comes from the 

parallel current j||, as it is by a factor of l/a (where l is the length of a filament) larger than 

the perpendicular current. An estimate of the parallel current that follows from Eqs. (11), 

(12) is: 

! 

j
||
~ cpl /aRB . This current generates the magnetic field that has a component 

! 

"B# ~ 4$lp /BR , perpendicular to the main magnetic field and causes a displacement of 

field lines in the filament from their initial positions by the distance 

! 

~ "B#l /B . Imposing 

the constraint that this displacement be less than the filament radius a, we obtain the 

following constraint on the plasma beta: 

! 

" < aR / l
2 . This condition is rather restrictive. 

One should however remember that the parallel current may actually be smaller than  

! 

j
||
~ cpl /aRB : this estimate assumes that there exists a significant divergence of the 

cross-field current, whereas this is not necessarily the case. In particular, if the filament is 

not too long, so that he curvature can be considered as constant, then the cancellation of 
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the curvature-driven current and the polarization current occurs in every cross-section, 

and the parallel current becomes much less than

! 

j
||
~ cpl /aRB . Here we assume that the 

mass is also uniformly distributed along the filament: if some part of it is too heavily 

loaded, the local cancellation becomes impossible.  

VI. SHEATH RESISTANCE 

For the situation where the filament has reached the zone in the shadow of a 

poloidal limiter (or some other structural elements, like RF antennas), one (or both) of its 

ends come in contact with the limiter surface (Fig. 3). For a conducting limiter, a 

considerable reduction of the polarization electric field may occur, leading to a slowing 

down of the filament motion. However, because of a finite resistance of the sheath at the 

plasma-wall interface, the reduction of the electric field is only partial, meaning that there 

is no perfect line-tying at the wall. This observation dates back to a paper of Kunkel and 

Guillory [19]. In the problem of the blob propagation the appropriate boundary condition 

was used, in particular in Refs. [9, 10].   

In the formal description of this phenomenon, we have to allow for a current flow 

to the limiter and impose the boundary condition relating the current and the potential in 

this zone. Instead of Eq. (14), we will have now (assuming that only one end of the 

filament is in contact with the wall): 

! 

ds

B
" jn,g" dS =

1

B
0

xn,g j|| end dS"             (21)  

In this section we take as a reference point the intersection point between the filament 

and the limiter.  
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We consider the situation where the limiter surface is normal to the toroidal 

magnetic field, as shown in Fig. 3. In this case, one can use the following current-voltage 

characteristics (Cf. Refs. [9,10,21]):  

! 

j|| = jsat
e(" #" f )

Te
              (22) 

where 
  

! 

jsat ~ envTi
 is the ion saturation current density. The parallel current is considered 

positive if it flows along the magnetic field. The sign in Eq. (22) corresponds to Fig. 3, 

where the direction of the magnetic field is shown by arrow. We use the current-voltage 

characteristic in a linearized form, assuming that the current is smaller than the ion 

saturation current. In Eq. (22), ϕ is the plasma potential with respect to the grounded 

limiter, and ϕf is the floating potential. [One can note in passing that the presence of the 

tilt of the limiter surface with respect to the toroidal field would give rise to additional 

terms in the linearized current-voltage characteristic, as discussed in Ref. 16]. 

 For the filament that is in contact with the limiter, we use, as a reference point, its 

intersection point with the limiter. The tangential (to the limiter surface) component of 

the electric field at the plasma side of the sheath is:  

! 

Eg0
=
B

0
˙ " n0

c
; En0

= #
B

0
˙ " g0

c
,             (23) 

and the plasma potential, accordingly, is  

! 

" =
B

0

c
#xg

˙ $ n0
+ xn

˙ $ g0( ) + C              (24) 

The integration constant can be determined from the condition that the net current 

through the filament is zero (for the other end not in contact with material surface, Fig. 3; 

otherwise, the constant has to be determined by matching the current at two ends): 
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! 

C =
jsat" f

Te
# dS $

B
0

˙ % n0

c

jsat xg

Te
# dS +

B
0

˙ % g0

c

jsat xn

Te
# dS

& 

' 
( ( 

) 

* 
+ + 

jsat

Te
# dS

& 

' 
( 

) 

* 
+ 

$1

        (25) 

We assume that the density of the filament falls off from the central line rapidly enough 

to make integrals in this equation convergent. After this preparatory work, we substitute 

the current (22) into Eq. (21), with the potential related to the velocity of the filament by 

Eqs. (24), (25). This yields:  

! 

j
|| end xndS =

eB
0

c

jsat

Te
dS"

# 

$ 
% 

& 

' 
( Ann

˙ ) g0
* Ang

˙ ) n0
+ Cn( )"           (26) 

! 

j
|| end xgdS =

eB
0

c

jsat

Te
dS"

# 

$ 
% 

& 

' 
( )Agg

˙ * n0
+ Ang

˙ * g0
+ Cg( )"          (27) 

where the coefficients 

! 

A"#  and Cα (with α= n, g; β= n, g) are: 
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' 

( 
) 
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 (29) 

As it should be, this result is invariant with respect to the choice of a median field line 

(changing the origin in the xn, xg plane). The coefficients 

! 

A"# are of order of the cross-

sectional area of the filament, a2, whereas the coefficients Cα are of the order of 

! 

a
2
(c" f /aB0).   

 The left-hand side of Eq. (21) can be evaluated based on Eq. (11), exactly as in 

Sec. III. In the present analysis we neglect the acceleration terms (they are typically small 

if the contact with the conducting wall is present). In this way, we obtain the following 

equations of motion for the reference point (which, in the case under consideration, is just 

the footpoint of the filament):  
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! 

Agg
˙ " n0

# Ang
˙ " g0

+ Cg = #
2c

2

eB
0

jsat

Te
dS$

% 

& 
' 

( 

) 
* 

#1

(+B)n ds

B
3

pdS$$
% 

& 
' 

( 

) 
*    (30) 

! 

Ann
˙ " g 0

# Ang
˙ " n 0

+ Cn =
2c

2

eB
0

jsat

Te

dS$
% 

& 
' 

( 

) 
* 

#1

+ B gds

B
3

pdS$$
% 

& 
' 

( 

) 
*     (31) 

The displacement at an arbitrary point along the filament is related to ξn0 and ξg0 by Eqs. 

(6) and (7).  

 Worth attention are the last terms in the l.h.s. of Eqs. (30), (31). If they are non-

zero, they represent additional drive for the average displacement of the filament, 

unrelated to curvature effects. They are the consequence of possible asymmetries in the 

temperature and density distribution across the filament and are related to the sheath-

driven modes considered, e.g., in Ref. [22]. If these terms are present, whereas the 

curvature is small (i.e., the r.h.s. of Eqs. (30), (31) can be neglected), the filament would 

move with the velocity (that can be evaluated from Eqs. (30), (31))  

! 

˙ " #0
~ c$ f /aB

0
~ %cTe /eaB

0
.        (32) 

where 

! 

" # ln m
i
/m

e
~ 3 (Cf. Ref. 20). The direction would be determined by the details 

of the temperature and density distribution. 

To separate this effect from the curvature drive, we consider a filament in which 

the density and temperature distribution possess a symmetry with respect to the inversion 

xn→-xn, xg→-xg.  In this case, Ang=0, Cn=Cg=0, and Eqs. (30), (31) reduce to:  

 

! 

Agg
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2
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0
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*           (33) 
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*           (34) 
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For a flux-tube with uniform parameters, and having a circular cross-section of a radius a 

(in the reference point), these equations reduce to 

! 

˙ " n0
=

2cTe p

a
2
jsat

ds
#B( )

n

B
3$ , 

! 

˙ " g0
= #

2cTe p

a
2
jsat

ds
$B( )

g

B
3%           (35) 

If the filament is not too long, so that the gradients in the r.h.s. do not change their sign, 

the cross-field drift velocity can be evaluated as  

! 

˙ " #0
~
cT

e

eB
0
a

$
i

a

s

R
1+

T
e

T
i

% 

& 
' 

( 

) 
*              (36) 

where s is the length of the filament. By comparing Eqs. (32) and (36) one sees that if 

both the curvature drive and the temperature and density asymmetries are present, the 

former is dominant for long, narrow filaments, s/R>Λa/ρi.  

VII. RESISTIVE BALLOONING 

 When the electron temperature is low, the sheath resistivity decreases, and the 

drift velocity (36) becomes small (it is proportional to Te).  In such a situation the model 

where the end of a filament is considered anchored to the limiter becomes relevant, and 

the effects of a finite plasma resistivity come to fore. This will be the parallel resistivity, 

because 

! 

j
||
 is much higher than 

! 

j" . The presence of the parallel current in the flux tube of 

a finite resistivity requires the presence of the parallel electric field and, therefore, the 

purely flute-like displacement (Eq. (6), (7)) becomes impossible. The plasma filament 

can now deviate from the magnetic field lines, the effect that can be called “resistive 

ballooning” (e.g., [23]).  

We measure the displacement ξn(s,t), ξg(s,t) with respect to the field line that 

passes through the (resting) footpoint of the filament. In the frame co-moving with the 

plasma filament, there will appear a time-varying magnetic field threading the flux tube 
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in the direction perpendicular to the flux tube. Simple geometrical consideration shows 

that this field is: 

! 

"Bn = #
B

BpR

$

$s
BpR%n( ) ;  

! 

"Bg = #Bp

$

$s

B

Bp

%g
& 

' 
( ( 

) 

* 
+ + .          (37) 

This perturbation becomes zero, as it should,  for a purely flute-type displacement (6), 

(7), with the shear term neglected in accordance of our assumption od its smallness. In 

the approximation of a thin flux tube, this field can be considered as uniform over the 

cross-section of the tube.  

 By differentiating Eq. (37) over the time, we obtain 

! 

" ˙ B n = #
1

BpR

$

$s
BpR ˙ % n( ) ; 

! 

" ˙ B g = #Bp

$

$s

B

Bp

˙ % g

& 

' 
( ( 

) 

* 
+ +          (37’) 

 The Faraday law, 

! 

" # E = $(1/c)% ˙ B , then yields for the parallel electric field: 

! 

"E
||

"xn

= #$ ˙ B g ;  

! 

"E
||

"xg

= # ˙ B n              (38) 

For a uniform δB, these equations can be readily integrated to yield: 

! 

E
||

= "xn
Bp

B

#

#s

B

Bp

˙ $ g

% 

& 
' ' 

( 

) 
* * +

xg

BpR

#

#s
BpR

˙ $ n( ) + D          (39) 

where the parameter D will be determined shortly. This parameter and the coefficients by 

which xn and xg are multiplied do not depend on xn, xg in the thin-tube approximation. The 

current density is j||=σ(xn, xg, s)E||, where s is the electrical conductivity.  The net current 

through the flux-tube is zero, this allowing us to find D: 

! 

D =< xn >
Bp

B

"

"s

B

Bp

˙ # g

$ 

% 
& & 

' 

( 
) ) *

< xg >

BpR

"

"s
BpR

˙ # n( )  ,          (40) 

with 
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! 

< xn,g >= xn,g"dS#( ) / "dS# .             (41) 

We assume that the conductivity falls off rapidly enough outside the tube, so that the 

integrals in Eq. (41) converge.  

 The final step is to substitute the parallel current density into Eq. (13) and then 

use Eq. (11). This yields:  
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2(;B)n

B
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where  

! 

D
nn

= x
n

2
" x

n

2; 

! 

Dng = xn xg " xn xg ;  

! 

Dgg = xg
2
" xg

2

        (44) 

are defined analogously to Eq. (41). These coefficients do not depend on the choice of the 

median line in the flux tube. 

General equations (42), (43) account for possible resistive effects in a complex 

geometry.  In the high-conductivity limit, σ→∞, in order to keep the second term in the 

lhs comparable to the other terms, one has to impose a constraint (6). After that, by 

dividing equations (42), (43) by B2 and integrating them along the flux tube, one 

eliminates the second term, and recovers Eqs. (14), (15). In other words, in the high-

conductivity limit, the resistive effects do not bring up anything particularly new to the 

flute-like solution (16), (17).  

The situation changes dramatically if one or both ends of the filament are 

anchored, i.e., the displacements there is held zero. We do not discuss here possible 

mechanisms for anchoring, just look into its consequences. If we neglected the plasma 
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resistivity,  we would have to conclude that the flux-tube cannot move and stays at rest. 

However, accounting for even a small resistivity allows for resistive ballooning. As, at 

low resistivity, the corresponding motion is slow,  one can neglect the first term in the 

l.h.s. of Eqs. (42), (43). The remaining equations are easily integrable, although, in a 

general case, the result is very lengthy. As an example, we consider a flux-tube which is 

short compared to the connection length (but still long compared to a); in this case all the 

parameters of the magnetic field do not change significantly over the flux-tube length. 

The shape of the flux-tube cross-section also does not change. We assume that this is just 

a circle of a radius a. All the other parameters, p, ρ, and σ, are assumed to be constant 

over the whole volume of the flux tube. Under such conditions, Eqs. (42), (43) are 

reduced to:  

! 

" 2 ˙ # n,g /"s2
= 4DM$(%B)n,g /Ba

2 .            (45) 

For the flux-tube anchored at one end (say, s=0), this equation has a solution:  

! 

˙ " n,g = 2DM#($B)n,g s
2 % 2sl( ) /Ba

2,             (46)  

where DM=c2/4πσ is the magnetic diffusivity. The time for the flux-tube end to move by 

the distance equal to the flux-tube radius is δt~ Ra3/l2βDM. Then, evaluating the 

acceleration as a/δt 2, one finds that the inertial term in a full equations (42), (43) is 

negligible if 
  

! 

D
M

< v
Ti
a Ra

3
/"l2 , i.e., at low-enough resistivity. Note that the ratio 

! 

˙ " n / ˙ " g = (#B)n /(#B)g  remains the same as the ratio of accelerations in the problem of the 

short filament with free ends.  The cross-field velocity of the free end of the filament can 

be evaluated as 

! 

˙ " # ~
s

2
D
M
$

Ra
2

               (47) 
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When the filament deviates from the field line, the parallel plasma expansion 

along the field lines can lead to the change of the plasma density and pressure in any 

particular cross-section. In order this not to happen, the condition 
  

! 

l /a > v
Ti

/ ˙ " # must be 

satisfied, i.e., the flux tube must be long enough.   

VIII. DISCUSSION 

 We have considered the motion of a thin, low-beta, isolated plasma filament in 

the far scrape-off layer. For a filament of a substantial length, the parameters of the 

magnetic field (e.g., field line curvature) can vary significantly over the filament length, 

and the resulting motion is determined by some averaged (over the length) parameters of 

the field. We present such averaging procedures for an arbitrary toroidally-symmetric 

field. Although developed for the case where the displacement of every cross-section of 

the filament can be characterized by a single displacement vector (no slippage), the result 

may serve as a guidance for evaluating the average motion of a filament with internal 

slippage allowed. In a sense, our study is complementary to those of Refs. [9,10], where 

the slippage was allowed but a simple model of the magnetic field was used.  

 Generally speaking, the filament experiences both radial and poloidal 

displacement, with the radial displacement on the outboard side of a toroidal device 

directed towards the wall, while the poloidal displacement can be directed “up” or 

“down” depending on the position of the mid-point of the filament and the magnitude of 

the shear.  

 As is well kown, when the filament is in contact with a conducting surface of the 

poloidal limiter, its motion is determined by a sheath resistance (e.g., [6.10]). We provide 



 22 

an averaging procedure that allows one to evaluate the contribution of this effect to the 

average motion of the filament.  

 For a long-enough filament (or cold-enough plasma), the resistive ballooning 

becomes possible and the filament, in the course of its motion, deviates from the field 

lines. We present a procedure that allows one to describe this motion in an arbitrary 

toroidally-symmetric field.   

 Although we have concentrated on the basic physics issues, some of the 

conclusions may have an impact on the interpretation of experiments of the type [1-3]. In 

particular, correlation between the radial and poloidal velocity, possible role of non-

curvature-driven motion (Sec. VI), and relation between the sheath effects and resistive 

ballooning (Sec. VII).  
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APPENDIX I The geometry of the flux tube 

The geodesic displacement at an arbitrary point is a linear combination of ξg0  and 

ξn0, the latter contribution being associated with the magnetic shear. We first evaluate the 

contribution of the geodesic displacement ξg0. This contribution can be found from the 

observation that any field line on the given flux surface can be obtained from another 

field line on the same surface by toroidal shift by some appropriate angle α, the same for 

all the points on the field line, Fig. 4. Simple geometrical considerations show that, for 

small ξg,  αR=ξg(B/BpR). As α is constant along the given field line, we obtain: 

! 

"g = "g0
BpR

B

# 

$ 
% 

& 

' 
( 

B
0

Bp0R0

# 

$ 
% % 

& 

' 
( (            (A.1) 

To evaluate the contribution of the normal displacement, we note that the toroidal 

angle Δθ between the reference point and any other point at a given field line can be 

expressed as  

! 

"# =
B
T
dl

RB
P

$              (A.2) 

where the integration is taken along the flux surface from the reference point to a chosen 

point on the field line.  For a given reference point, this is a function of the poloidal arc 

length and the magnetic surface (i.e., the poloidal magnetic flux ψ).  We want to know, 

by how much the field line displaces in the poloidal direction, 

! 

"l # $ p = $gB /BT , in some 

cross-section characterized by the toroidal angle Δθ, if we displace the foot point of the 

field line in the reference point by ξn0 in the normal direction. For Δθ(l,θ)=const, one has:  

! 

"l(#$% /#l) + "&(#$% /#&) = 0 , 

! 

"#$ /"l = B
T
/RB

P
, 

! 

"# = 2$R
0
B
P 0
%
n0
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2$R

0
Bp0RBP

B

%&'

%(
           (A.3) 
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By summing up the contributions (A.1) and (A.3), we obtain: 
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"g = ("g0 +Q"n0)
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where the quantity  
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can be called “an integrated shear.” To make the last step in Eq. (A.5), we have used the 

fact that plasma pressure is small and the magnetic field can be considered as curl-free, 

meaning in particular that BTR=const.  Note that our “integrated shear” is a function not 

only of the flux coordinate but also of the reference point and the observation points on 

the filament. 
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R 
ξn 

X 

Fig. 1 Poloidal cross-section of a tokamak. Dash-doted line at the left  is a 
major axis, R is a major radius for a given point on the flield line, ξn is a 
normal displacement, the toroidal magnetic field is directed to the viewer, 
and the projection of the geodesic vector onto poloidal field is directed 
counter-clockwise.  
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Fig. 2. Various geometries of filaments 
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Fig. 3 projection of the filament (fat line) on the equatorial plane.  
The limiter is illustrated by two short lines. The magnetic axis is a 
dashed line.  
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ξg 

αR 

Fig. 4. Relating geodesic and toroidal displacement of the field 
line on the same flux surface.  


